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Recently, the CP violating three gluon operator 0, which can be identified as 

the chromoelectric dipole moment of the gluons has received a lot of attention’ in 
connection with its implication for the neutron electric dipole moment (NEDM). It 

was rea.lizedsJ that the chromoelectric dipole moment of the b quark, O;, can also 

play an important role in CP nonconservation. Certainly for any model which gives 
rise to the standard model as its low energy effective theory, we must include another 

operator, the topological B term4 Og, in considering the NEDM. Even long before the 
recent developments on the NEDM associated with 0, and O;, it was noted5 that Us 
can be induced in the course of the renormalization group (RG) evolutions of 0, and 
0;. In the previous studies, the effect of this RG induced B term has been ignored. 
In this paper, we wish to point out that the NEDM associated with 0, and 0; is 

largely dominated by the contribution from the RG induced 0 term in models without 
a Peccei-Quinn symmetry.’ 

To study the induction of 0s due to the renormalization, we first write down the 
&event operators defined by 

0, = (gf/S)f.~G”,G”“,G’,e’- , 

0; = (g,/2)G~~u’“r5(X’/2)b , 

Ue = (g;/64az)G;,G;ep”” . (1) 

Of course, this is far from a complete set of CP nonconserving (but flavor conserving 
since we are interested in the flavor conserving CP-odd quantity the NEDM) operators 
that can be induced at high energy. Here we made some approximations which can 
be easily justified in most of the models. First of all we ignored all the operators of 
dimension 7 or higher. They are typically suppressed by a large mass as dimensional 
argument required. Secondly, we ignored the four fermion operators because their 

mixing with 0~ is of higher order in both quark masses and the color fine structure 
constant. Thirdly, we ignored the operators with photon fields because we are only 
interested in the RG correction due to Quantum Chromodynamics (QCD). Clearly 
the RG mixing of these operator with 0s is suppressed by the electromagnetic fine 
structure constant and thus is typically small. 

The Weinberg operator 0, represents the chromoelectric dipole moment of the 
gluons7 and its coefficient is known to be suppressed5gs by the RG effect when running 

down to the hadronic scale. Morozov5 has calculated the mixing among operators in 
Eq.( 1). The renomalization group equations are 

d 2 a. 
p-&u; = -jgu; + 4mD3 1 
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d 
p--o, = -18Q’U, - 6cr:ma0,’ 

dp 
. 

2n 

We have checked the entry that was never confirmed by other calculation before. Here 

the color fine structure constant a,(~ gz/4 r and the mass rnb both run according to ) 

d 33 - 2n a, d 
/L---a. = - 

dp 3 Z;;% /L--m+, = -4$?&, 
dp 

with TL as the number of active flavors at the scale p. 
We have made some approximations in writing down the RG equations above. For 

example, U, has a RG mixing with the divergence of a gauge invariant axial vector 
current of quarks. However since the divergence of a gauge invariant current in the 
effective Lagrangian does not affect the dynamics, such RG mixing can be ignored. 
Also through the RG evolution, the chromoelectric dipole moment of a quark will in 
general induce an imaginary mass for the same quark. This imaginary mass term can 

also contribute to the induced B through the chiral anomaly effect when one makes 
the necessary chiral rotation to keep the quark mass eigenvalues real. However, if one 
keeps track of the powers of a., this effect is actually of higher order in (x, compared 
to the direct RG mixing with 08. Therefore we have ignored the imginary b quark 
mass operator induced by Us. 

The eigenstates of the RG equation are given by 

36rcz. 
ei, = 0, + mf2nmbO; - 

144x2 

5(7 + 2n) 
m;oo 1 

&=o; - 232y2n~a , 
, 

ei,=oe . 
They satisfy, 

(4) 

pd&&gyjg , d 2a, ~ 

dp 
p-&=---o; , /L~c&=O . 

dp 6n & 
(5) 

Let us now imagine a model for which flavor conserving CP violation can be de- 
scribed by the following effective Lagrangian /Zcp at the electroweak scale, say the 

W boson mass Mw: 

&P = (d,)ia,Q,(~w) + (db)M,$%(~fw) + (%d%(Mw) . (6) 

The above effective Lagrangian can be obtained from a renormalizable model by 

integrating out heavy particles around (or above) Mw. With the RG equation (2), 
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the effective Lagrangian at the scale rn: just above the b quark threshold is given by, 

&P = (dp),vWK;,!b=Og(mb+) 

+[(db)iw,&$ t (36*/17)(d,)M,(mbQ.),b(K~~~ - K;/y)]O;(m:) 

t[(144s2/1105)(d,)~,,,(m~),,(30K~,/~ - 13K$= - 17K$=) 

t(db)Mw(24~n/13)(mb/a.),,(K~~lb’13 - Kg;;) t (@),,]t&(m:), (7) 

where the renormalization factor Kwp is defined as 

Kw/b = %(MW)/h(mb) . (8) 

For later convenience, let us define dimensionless quantities (i, and & by 

(4&w = &GF, (db/mb)& = JbGr. (9) 

When removing the b quark from the effective Lagrangian, we use the following 
substitution2J as a matching condition, 

(mb),,o;(m;) + --C$(m;)/32az (10) 

Then we derive the CP nonconserving interaction at the hadronic scale p below the 
charm quark mass, 

where 

&P = ~GF/~.(P)~]~,(P) + [(&q + k,d]~.&) , (11) 

7 = a,(m~)2K~;~s{ -(1/32?+i,K;/~ + 

& [Kg;; - (9/136)(++&$? - K;,$=)l} , 

Bind= G~(m~),,[(24/13)(?r/a.),,(K~~~ - K$=)& 

t(144+105)d~(30K$ss - 13K;,!F - 17K;/;3)] . (12) 

Here we have defined -y so that it does not run, just like 0, when p < m,. Numerically, 
we have 

7 = 1.1 x lo-s& - 10-42 b) ei,d = 2.2 x lo-3& - 3.1 x 10-4&, , (13) 

for the QCD scale A = 150 MeV. The neutron electric dipole moment is related to 
the parameters in the effective Lagrangian of Eq. (6) as 

0, = vWFMx[4~Ig,(~)I + ~6%M~2mUm~l(my + md) 

= (6.7~& x lo-” x +1.370& x lo-Is) ecm , (14) 
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where 0 = (e)&. $ &,,a, the chiral symmetry breaking scale M, = 2rF, = 1.19 GeV, 

T = (md/9MeV)m,/(m, t md), and & and f B are coefficients associated with the 
unknown nonperturbative QCD dynamics. We then have 

D, = [(1.3 X lo’(@)~, t 29& - 4&)(# T 

+(0.74& - 0.0067&) f9] X lo-2o e cm. (15) 

We used, for light quark massesg, m, = 5 MeV and md = 9 MeV which give 
T = 0.36. The coefficients & and 40 are chosen such that the estimate using naive 

dimensional analysis lo (NDA) gives I&, N I&l N 1. Following Weinberg’, the renor- 
malization point for the NDA rule is chosen such that g(p) = an/&. However for the 

NEDM from U&L), more careful analyses’ are available and all of them give j&l 1 1. 
For example using the current algebra technique”, one finds I& N 7.7. About the 

NEDM from three gluon operator U,(p), although as naive as the NDA, a simple 
scaling argument” has been used to obtain I&, 2: l/30 which is significantly smaller 

than the NDA value. 
It is interesting to compare the contributions to NEDM from the RG induced 0 

term to those from U,(p) at the hadron scale h. For r = 0.36, we have 

6Dn(u, - ue)/6Dn(u, --t 0,) = 2 (fe/fd , (16) 

6D,(U; --+ Us)/SD,(U; -+ 0,) II 1.6 x 103(fe/&) , (17) 

where the arrows denote the RG evolution from Mw down to the hadronic scale p. 
The above result, together with the discussion of (0 and I, in the previous paragraph, 
implies that the NEDM associated with Ui(Mw) and U,(Mw) may be dominated by 
the RG induced 6’ term, instead of U,(p) which has been considered in the previous 
work&s, unless a significant cancellation occurs between (0)w and the RG induced 
&,a at the hadronic scale. This is particularly true for U;(Mw) and can be understood 
from the fact that the RG induced 0 term is not renormalieed around the hadron 

scale while the coefficient of the threshold induced 0, is strongly suppressed by the 
subsequent renormalzation effect. 

Let us now consider the implication of our analysis for models that incorporate CP 
violation. We first note that our analysis poses no problem for models with a Peccei- 
Quinn symmetry since in these models the B at low energy, 8 = (e),,,, + Bind, can 
rotated away by a Peccei-Quinn transformation. Thus in what follows, we concentrate 
on models without a Peccei-Quinn symmetry. Then our analysis implies that the 0 
term at the hadronic scale p gives a dominant contribution to the NEDM in models 
for which flavor conserving CP violation at the electroweak scale can be described by 
the effective Lagrangian of Eq. (6). Note that the result of Eq. (15) clearly shows 
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that the NEDM is dominated by the contribution from the 0 term at the hadronic 

scale p over most of the parameter space of coefficients (B)Mwr &, and (ib, except for 
a narrow region on which there occurs a dramatic cancellation between (6’)M, and 

ehd = 2.2 X low3cib - 3.1 X lo-%ig. 

The values of &, and & are model-dependent of course. Clearly they are negligibly 
small in the standard model. However in many interesting extensions of the standard 
model, their values can be large enough to give the NEDM observable in near future. 
In such models, (i, arises from two-loop diagrams1~‘3~” at high energy scales around 
Mw. Its typical size is about 

(16~‘)~’ x ( sin bcplz 10-s , (18) 

where &p denotes a CP violating phase in the interaction Lagrangian of heavy 
particles that appear in the two loop diagrams. For the range of & given by Eq. 
(X3), both the NEDM from U,(Mw) via the RG induced U&x) and that via U&) 
would be within the current experimental bound’s 10~s5e cm if 6cp < 0.1. 

Unlike (i,, the coefficient (ib occurs usually at the one-loop 1evelsJ and therefore 

can be significantly larger. For example, in the left-right symmetric models, we have 

& = (4di7?)-‘(mt/mb) sin&f sinq f(mf/M&) , (19) 

where t(< 0.0055)‘s is the mixing angle between W, and W, and n is the CP violating 
phase. The function 

f(h) = (1 ‘,,a [1+ jh t ifis + ;(yog;)l (20) 

is typically of order one. In the multi Higgs doublet Higgs model,s’s the charged 

Higgs boson exchange gives rise to 

& = (4v%Z)-‘zm z g(m:/MA) . 

where ZmZ is the CP violating parameter and the function 

g(h) = (1 “,), (h - 3 - qg) (22) 

is again typically of order one. 

For the natural range of lib given by Eqs. (19,21), the NEDM associated with 
Ug(Mw) via the threshold induced 0, is within the experimental bound. However 
the RG induced B term will give rise to a too large NEDM in Eq. (15) for natual 
CP violation, i.e. 7~ or Zm Z N 0.1 - 1 unless there occurs a dramatic cancellation 
between fZina and (e),,. Then barring this cancellation, the NEDM from the RG 
induced 0 term in Eq. (15) gives the upper bound 
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I&l 5 1.3 x lo-7, (23) 

if one uses the current algebra result I& = 7.7. Such bound can be translated into 
stringent constraints on the CP violating parameter in the left-right symmetric model 

and the multi Higgs doublet model as 

Isinf sinn] 554 x lo-’ ; 

IZm ZI 5 10-s (for Mar N mt). (24) 

To conclude, we have argued that the 6 term at the hadronic scale gives a dominant 
contribution to the NEDM in models without a Peccei-Quinn symmetry for which 

flavor conserving CP violation at the electroweak scale can be described by the effec- 
tive Lagrangian of Eq. (6). Furth ermore barring the cancellation between (B)M, and 
8. ,,,d, the 6 term induced by the RG evolution of the chromoelectric dipole moments 
of the b quark leads to a strong bound on CP violating parameters in the left-right 
symmetric model and the multi Higgs doublet model. For most of the models of CP 
violation without a Peccei Quinn symmetry in the literature, one still has to resort to 

a fine-tunning of parameters to avoid the strong CP problem. Even in that case, our 
analysis shows that one has to be very careful about the scale at which the fine-tuning 
is performed. In that sense, it makes the fine-tuning even less attractive. 
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